Lung Exchange

Haluk Ergin†       Tayfun Sönmez‡       M. Utku Ünver§

September 24, 2014

Abstract

Due to the worldwide shortage of deceased donor organs for transplantation, tissue/organ donations from living donors became a significant source of transplant organs for various organs including kidneys, livers, and lungs. However, not all willing living donors can donate to their intended patients due to medical incompatibility between the donor and the patient. For any organ with living donor transplantation, such incompatibilities can be overcome by an exchange (of donors) between patients with incompatible donors. Such exchanges became widespread in the last decade for kidneys with the introduction of optimization and market design techniques to kidney exchange. Following the success of kidney exchange, a small but growing number of liver exchanges are also conducted. However, even though living donor lung transplantation is introduced more than two decades ago, lung exchange is neither practiced nor introduced. From an organizational perspective living donation is more involved for lungs than kidneys or livers for it often requires two donors. While this makes living donation more difficult for the lungs, it also means that the role of exchange might be more prominent for living donor lung transplantation. We introduce lung exchange as a novel transplantation modality, develop an an analytical lung exchange model, and introduce optimal lung exchange mechanisms under various logistical constraints. Our simulations suggest that the number of living donor lung transplants can be doubled by allowing 2-way and 3-way exchanges alone, and can be tripled in the absence of logistical constraints.

†Sönmez and Ünver acknowledge the financial support of National Science Foundation through grant SES #1426440. Sönmez acknowledges the support of Goldman Sachs Gives - Dahnç Arıburnu Faculty Research Grant.

‡University California at Berkeley, Department of Economics; hie@berkeley.edu

§Boston College, Department of Economics and Distinguished Research Fellow at Koç University; sonmezt@bc.edu

§Boston College, Department of Economics and Distinguished Research Fellow at Koç University; unver@bc.edu
1 Introduction

Kidney Exchange, originally proposed by Rapaport (1986), has become a major source of kidney transplants with the introduction of optimization and market design techniques to kidney exchange by Roth, Sönmez, and Ünver (2004, 2005, 2007). A handful of transplants from kidney exchanges in the US prior to 2004, increased to 93 in 2006 and to 553 in 2010 (Massie et al., 2013). Currently transplants from kidney exchanges in the US account for about 10% of all living donor kidney transplants. While kidney is the most common organ donated by living donors, it is not the only one. Liver and lung are two other organs for which living donor transplantation is practiced. For the case of living donor liver transplantation, a compatible donor donates a lobe of her liver to the patient. Liver is the second most common organ for living donation and in 2013 transplants from living donors account for about 5% of all liver transplants in the US.\(^1\) From an organizational perspective \textit{living-donor lobar lung transplantation} is a more elaborate procedure for it often requires two compatible donors for each patient. If available for donation, both donors donate a lung lobe to the patient in need of transplantation.

For any organ with living donor transplantation, an exchange (of donors) between patients with incompatible donors is a medical possibility to overcome the incompatibility. Indeed, a small but growing number of liver exchanges have been conducted so far with the introduction of this transplant modality in South Korea in 2003 (Hwang et al., 2010). On the other hand, while living donor lobar lung transplantation was introduced more than two decades ago in 1990 (Starnes, Barr, and Cohen, 1994) and it has been especially common in Japan (Sato et al., 2014), \textit{living donor lobar lung exchange} has not been introduced so far. In this paper we

1. introduce living donor lobar lung exchange (or simply \textit{lung exchange}) as a potential transplantation modality,

2. develop a lung exchange model,

3. introduce optimal lung exchange mechanisms under various logistical constraints, and

4. simulate the gains from lung exchange based on lung transplantation data from the US.

As in the case of kidneys and livers, deceased donor lung donations have not been able to meet the demand for lungs. As a result, hundreds of patients die each year in US alone

\(^1\)In contrast to US, living donor liver transplantation is considerably more common than deceased donor liver transplantation in East Asian countries due to cultural reasons (Tanaka et al., 2004; Chen et al., 2013).
while waiting for lung transplantation. Living donor lobar lung transplantation was initially introduced by Dr. Vaughn Starnes and his colleagues for patients who are too critically ill to survive the waiting list for deceased donor lungs. Since then, eligibility for this novel transplantation modality has been expanded to cystic fibrosis and other end-stage lung disease patients. Sato et al. (2014) report that there is no significant difference in patient survival between living donor and deceased donor lung transplantations.

A healthy human has five lung lobes: Three lobes in the right lung and two lobes in the left lobe. In a living donor lobar lung transplantation two donors each donate a lower lobe to the patient to replace patient’s dysfunctional lungs. Each donor shall not only be blood-type compatible with the patient, but donating only a lobe he should also be as heavy. That makes living donation much harder to arrange for lungs than for kidneys or livers, even if a patient is able to find two willing donors. Based on our simulations reported in Table 2, more than 80% of the patients with two willing donors can be incompatible with at least one of their donors. In contrast, only about a third of the willing donors are incompatible with their intended patients for kidneys (Segev et al., 2005). This observation suggests that the marginal benefit of lung exchange to living donor lobar lung transplantation can be considerably higher than the marginal benefit of kidney exchange to living donor kidney transplantation. Our simulations in Table 2 confirm that this is indeed the case: For a pool of 50 patients with willing donors, the availability of lung exchange has the potential to increase the number of living donor lobar lung transplantations

- by 60% with 2-way exchanges alone,
- by about 100% when only 2-way and 3-way exchanges are allowed, and
- by almost 200% when exchanges are not restricted by size.

As in the case of kidney exchange, all operations in a lung exchange will have to be carried out simultaneously. This practice assures that no donor donates a lung lobe unless his intended recipient receives a transplant. As such, organizing these exchanges is not an easy task: A two-way lung exchange involves six simultaneous operations, a three-way lung exchange involves nine simultaneous operations, and so on. As shown in Roth, Sönmez, and Ünver (2007), most of the gains from kidney exchange can be obtained by exchanges no larger than three-way. In this paper we show that this will not be the case for lung exchange, and the marginal benefit will be considerable at least until 6-way lung exchange (cf Table 2 and Theorem 3). This observation suggests that exploring the structure of optimal lung exchange mechanisms is important under various constraints on size of feasible exchanges.

Our lung exchange model builds on the kidney exchange model of Roth, Sönmez, and
Unver (2004, 2007). Medical literature suggests that a donor can donate a lung lobe to a patient if he is

1. blood-type compatible with the patient, and

2. size-compatible (in the sense that the donor is at least as tall as the patient).

For our simulations reported in Section 5, we take both blood-type compatibility and size-compatibility into consideration in order to assess welfare gains from lung exchange under various constraints. For our analytical results on optimal lung exchange mechanisms we consider a simplified model with only blood-type compatibility as a first step. This allows us to define each patient as a triple of blood types (one for the patient and two for her incompatible donors), and we use this structure to introduce optimal mechanisms for (i) two-way exchange alone, (ii) two-way and three-way exchange, and (iii) unrestricted exchange. This simplified model has a second interpretation where there are two blood types (A and O) and two patient/donor sizes (large and small). This interpretation is also of some interest since about 85% of the US population is of blood-types A and O.

![Figure 1](image-url) Possible two-way exchanges. Each patient (denoted by P) and her paired donors (each denoted by D) are represented in an ellipse. Carried donations in each exchange are represented by directed line segments. At the left, each patient swaps both of her donors with the other patient. At the right, each patient swaps a single donor with the other patient and receives a graft from her other donor.

While there are important similarities between kidney exchange and lung exchange, there are also important differences. From an analytical perspective the most important difference between lung exchange and kidney exchange is the presence of two donors for each patient for the case of lung rather than only one as in the case of kidney. This difference makes the lung exchange model analytically more demanding than the kidney exchange model. Even organizing an individual exchange is a richer problem for lung exchange than for kidney exchange. For kidney exchange, each exchange (regardless of the size of the exchange) is in a
Figure 2: Possible three-way exchanges. At the upper-left, each patient trades one donor in a clock-wise trade and the other donor in a counter-clock-wise trade. At the upper-right, each patient trades both of her donors in clock-wise trades. At the lower-left, each patient trades one donor in a clock-wise exchange and receives a graft from her other donor. At the middle, one patient is treated asymmetrically with respect to the other two: one patient trades both of her donors in 2 two-way trades, one with one patient, the other with the other patient; while each of the other patients receives a graft from her remaining donor. At the lower-right, all patients are treated asymmetrically, one patient receives from one of her own donors, one patient’s both donors donate to a single patient, while the last patient’s both donors donate to the other two patients.

cycle configuration where the donor of each patient donates a kidney to the next patient in a cycle. For the lung exchange there are two exchange configurations for two-way exchange (see Figure 1), five exchange configurations for three-way exchange, (see Figure 2) and so on. The richness of exchange configurations in lung exchange also means, optimal organization of these exchanges will be more challenging for lung exchange than for kidney exchange. Despite this technical challenge we provide optimal lung exchange mechanisms for the cases of (i) 2-way exchange, (ii) 2-way and 3-way exchange, and (iii) unconstrained exchange.

Increasingly, economists are taking advantage of advances in technology to design new or improved allocation mechanisms in applications as diverse as entry-level labor markets (Roth and Peranson, 1999), spectrum auctions (Milgrom, 2000), internet auctions (Edelman, Ostrovsky, and Schwarz, 2007; Varian, 2007), school choice (Abdulkadiroğlu and Sönmez, 2003), kidney exchanges (Roth, Sönmez, and Ünver, 2004, 2005, 2007), course allocation
(Sönmez and Ünver, 2010; Budish and Cantillon, 2012), affirmative action (Kojima, 2012; Hafalir, Yenmez, and Yildirim, 2013; Echenique and Yenmez, 2012; Kominers and Sönmez, 2013), cadet-branch matching (Sönmez and Switzer, 2013; Sönmez, 2013), and assignment of arrival slots (Schummer and Vohra, 2013; Abizada and Schummer, 2013). Our paper not only contributes to the emerging field of market design by introducing a novel application in lung exchange, but also contributes to transplantation literature by introducing a novel transplantation modality.

2 Two-Way Lung Exchange

Let $\mathcal{B} = \{O, A, B, AB\}$ be the set of blood types. We denote generic elements by $X, Y, Z \in \mathcal{B}$. Let $\succeq$ be the partial order on blood types defined by $X \succeq Y$ if and only if blood type $X$ can donate to blood type $Y$. Figure 3 illustrates the partial order $\succeq$.\footnote{For any $X, Y \in \mathcal{B}$, $X \succeq Y$ if and only if there is a downward path from blood type $X$ to blood type $Y$ in Figure 3.} Let $\rhd$ denote the asymmetric part of $\succeq$.

\begin{figure}[h]
\centering
\begin{tikzpicture}
  \node (O) at (0,0) {$O$};
  \node (A) at (-1,-1) {$A$};
  \node (B) at (1,-1) {$B$};
  \node (AB) at (0,-2) {$AB$};

  \draw (O) -- (A);
  \draw (O) -- (B);
  \draw (A) -- (AB);
  \draw (B) -- (AB);
\end{tikzpicture}
\caption{The Partial Order $\succeq$ on the Set of Blood Types $\mathcal{B} = \{O, A, B, AB\}$.}
\end{figure}

Each patient participates in the lung exchange with two donors, which we refer to as a triple. The relevant information concerning the patient and her two donors can be summarized in the form of a triple of blood types $X - Y - Z \in \mathcal{B}^3$, where $X$ is the blood type of the patient, and $Y$ and $Z$ are the blood types of the donors. We will refer to each element in $\mathcal{B}^3$ as a triple type such that the order of the donors has no relevance, i.e., types $X - Y - Z$ and $X - Z - Y$ refer to the same triple type.

Definition 1 A lung exchange pool is a vector of nonnegative integers $\mathcal{E} = \{n(X - Y - Z) : X - Y - Z \in \mathcal{B}^3\}$ such that:

1. $n(X - Y - Z) = n(X - Z - Y)$ for all $X - Y - Z \in \mathcal{B}^3$.\footnote{For any $X, Y \in \mathcal{B}$, $X \succeq Y$ if and only if there is a downward path from blood type $X$ to blood type $Y$ in Figure 3.}
2. \( n(X - Y - Z) = 0 \) for all \( X - Y - Z \in B^3 \) such that \( Y \geq X \) and \( Z \geq X \).

The number \( n(X - Y - Z) \) stands for the number of participating \( X - Y - Z \) type triples.

The first condition in the definition of a lung exchange pool correspond to the assumption that the order of the donors does not matter, i.e., \( X - Y - Z \) and \( X - Z - Y \) represent the same type. The second condition corresponds to the assumption that compatible patient-donor triples prefer not to participate in the lung exchange.

In the rest of this section, we will assume that only two-way exchanges are allowed. We will characterize the maximum number of transplants for any given exchange pool \( E \). We will also describe a matching that achieves this maximum.

There are 40 types of triples accounting for repetitions due to reordering of donors. The following Lemma simplifies the problem substantially by showing that only six of these types may take part in two-way exchanges.

**Lemma 1** In any given exchange pool \( E \), the only types that could be part of a two-way exchange are \( A - Y - B \) and \( B - Y - A \) where \( Y \in \{O, A, B\} \).

**Proof of Lemma 1:** Since \( AB \) blood-type patients are compatible with their donors, there are no \( AB \) blood-type patients in the market. This implies that no triple with an \( AB \) blood-type donor can be part of a two-way exchange, since \( AB \) blood-type donors can only donate to \( AB \) blood-type patients.

We next argue that no triple with an \( O \) blood-type patient can be part of a two-way exchange. To see this, suppose that \( X - Y - Z \) and \( O - Y' - Z' \) take part in a two-way exchange. If \( X \) exchanges her \( Y \) donor, then \( Y \) can donate to \( O \) so \( Y = O \). If \( X \) does not exchange her \( Y \) donor, then \( Y \) can donate to \( X \). In either case, \( Y \geq X \). Similarly \( Z \geq X \), implying that \( X - Y - Z \) is a compatible triple, a contradiction.

From what is shown above, the only triples that can be part of a two-way exchange are those where the patient blood type is in \( \{A, B\} \), and the donors’ blood types are in \( \{O, A, B\} \). If we further exclude the compatible combinations and repetitions due to reordering the donors, we are left with the six triple types stated in the Lemma.

The six types of triples in Lemma 1, are such that every \( A \) blood-type patient has at least one \( B \) blood-type donor, and every \( B \) blood-type patient has at least one \( A \) blood-type donor. Therefore, \( A \) blood-type patients can only take part in an two-way exchange with \( B \) blood-type patients, and vice versa. Furthermore if they participate in a two-way exchange,
the $A - A - B$ and $B - A - B$ types must exchange exactly one donor; the $A - B - B$ and $B - A - A$ types must exchange both donors; and the $A - O - B$ and $B - O - A$ types might exchange one or two donors. We summarize the possible two-way exchanges as the edges of the graph in Figure 4.

We will show that the following matching procedure maximizes the number of transplants through two-way exchanges. The procedure sequentially maximizes three subsets of two-way exchanges:

**Procedure 1 (Sequential Matching Procedure for Two-Way Exchanges)**

**Step 1:** Match the maximum number of $A - A - B$ and $B - B - A$ types. Match the maximum number of $A - B - B$ and $B - A - A$ types.

**Step 2:** Match the maximum number of $A - O - B$ types with any subset of the remaining $B - B - A$ and $B - A - A$ types. Match the maximum number of $B - O - A$ types with any subset of the remaining $A - A - B$ and $A - B - B$ types.

**Step 3:** Match the maximum number of the remaining $A - O - B$ and $B - O - A$ types.

Figure 5 graphically illustrates the pairwise exchanges that are carried out at each step of the sequential matching procedure. The next Theorem shows the optimality of this procedure and characterizes the maximum number of transplants through two-way exchanges.

**Theorem 1** Given an exchange pool $E$, the above sequential matching procedure maximizes the number of two-way exchanges. The maximum number of transplants through two-way
Figure 5: The Optimal Two-Way Sequential Matching Procedure

Figure 6: The Maximum Number of Transplants through Two-Way Exchanges

exchanges is $2 \min\{N_1, N_2, N_3, N_4\}$ where:

\[
\begin{align*}
N_1 &= n(A - A - B) + n(A - O - B) + n(A - B - B) \\
N_2 &= n(A - O - B) + n(A - B - B) + n(B - B - A) + n(B - O - A) \\
N_3 &= n(A - A - B) + n(A - O - B) + n(B - O - A) + n(B - A - A) \\
N_4 &= n(B - B - A) + n(B - O - A) + n(B - A - A)
\end{align*}
\]

Figure 6 depicts the sets of triple types whose market populations are $N_1$, $N_2$, $N_3$, and $N_4$.

Proof of Theorem 1: Let $N$ denote the maximum number of two-way exchanges. Since each such exchange results in two transplants, the maximum number of transplants through two way exchanges is $2N$. We will prove the Theorem in two parts

$N \leq \min\{N_1, N_2, N_3, N_4\}$: Since each two-way exchange involves an $A$ blood-type patient, we have that $N \leq N_1$. Since $A - A - B$ types can only be part of a two-way exchange with $B - B - A$ or $B - O - A$ types, the number of two-way exchanges that involve an $A - A - B$ type is bounded above by $n(B - B - A) + n(B - O - A)$. Therefore, the number of two-way exchanges involving an $A$ blood-type patient is less than or equal to this upper bound plus the number of $A - O - B$ and $A - B - B$ types, i.e., $N \leq N_2$. The inequalities $N \leq N_3$ and $N \leq N_4$ follow from symmetric arguments switching the roles of $A$ and $B$ blood types.

We will next show that the matching procedure achieves $\min\{N_1, N_2, N_3, N_4\}$ exchanges.
This implies \( N \geq \min\{N_1, N_2, N_3, N_4\} \). Since \( N \leq \min\{N_1, N_2, N_3, N_4\} \), we conclude that \( N = \min\{N_1, N_2, N_3, N_4\} \) and hence the matching procedure is optimal.

Case 1: \( \underline{N_1 = \min\{N_1, N_2, N_3, N_4\}} \): From \( N_1 \leq N_2 \), \( N_1 \leq N_3 \), and \( N_1 \leq N_4 \), we obtain the inequalities:

\[
\begin{align*}
 n(A - A - B) & \leq n(B - B - A) + n(B - O - A) \\
n(A - B - B) & \leq n(B - A - A) + n(B - O - A) \\
n(A - A - B) + n(A - B - B) & \leq n(B - B - A) + n(B - A - A) + n(B - O - A)
\end{align*}
\]

Therefore, after the maximum number of \( A - A - B \) and \( B - B - A \) types and the maximum number of \( A - B - B \) and \( B - A - A \) types are matched in the first step, there are enough \( B - O - A \) types to accommodate any remaining \( A - A - B \) and \( A - B - B \) types that in the second step.

Since \( N_1 \leq N_4 \), there are at least \( n(A - O - B) \) type triples with \( B \) blood-type patients who are not matched to \( A - A - B \) and \( A - B - B \) types in the first two steps. Therefore, all \( A - O - B \) type triples are matched to triples with \( B \) blood-type patients in the second and third steps. The resulting matching involves \( N_1 \) exchanges, since all \( A \) blood-type patients take part in a two-way exchange.

Case 2: \( \underline{N_2 = \min\{N_1, N_2, N_3, N_4\}} \): Since \( N_2 \leq N_1 \), we have \( n(A - A - B) \geq n(B - B - A) + n(B - O - A) \). Therefore, all \( B - B - A \) types are matched to \( A - A - B \) types in the first step. Similarly, \( N_2 \leq N_4 \) implies that \( n(A - O - B) + n(A - B - B) \leq n(B - A - A) \). Therefore, all \( A - B - B \) types are matched to \( B - A - A \) types in the first step. There is no remaining \( B - B - A \) types, but enough \( B - A - A \) types to accommodate all \( A - O - B \) types in the second step. Similarly, there is no remaining \( A - B - B \) types, but enough \( A - A - B \) types to accommodate all \( B - O - A \) types in the second step. There are no more exchanges in the third step. The resulting matching involves \( N_2 \) two-way exchanges.

The cases where \( N_3 \) and \( N_4 \) are the minimizers follow from symmetric arguments exchanging the roles of \( A \) and \( B \) blood types.

The model and the results we presented in this section have an alternative interpretation with size constraints on donation. Consider the following alternative model. There are only two blood types \( O \) or \( A \), and two sizes large (\( l \)) or small (\( s \)) for each individual. A donor can donate to a patient if: (i) the patient is blood type compatible with the donor and (ii) the donor is not strictly smaller than the patient. Figure 7 illustrates the partial order \( \geq \) on the set of individual types \( \{O, A\} \times \{l, s\} \). Note that the donation partial order in Figure 7 is order isomorphic to the donation partial order of the original model in Figure 3.
if we identify Ol with O, Al with A, Os and B and As with AB. Therefore, all the results of the section also apply to the model with size constraints on donation after appropriately relabeling individuals’ types.

3 Two- and Three-Way Lung Exchange

We have seen in Section 2 that if only two-way exchanges are allowed for, then every two-way exchange must involve exactly one A and one B blood-type patient. The following Lemma generalizes these observations to K-way exchanges for arbitrary $K \geq 2$. In particular, every K-way exchange must involve an A and a B blood-type patient, but if $K \geq 3$, then it might also involve O blood-type patients.

**Lemma 2** Let $\mathcal{E}$ and $K \geq 2$ be given. Then, the only types that could be part of a $K$-way exchange are $O-Y-A$, $O-Y-B$, $A-Y-B$, and $B-Y-A$ where $Y \in \{O, A, B\}$. Furthermore, every $K$-way exchange must involve an A and a B blood-type patient.

**Proof of Lemma 2:** As argued in the proof of Lemma 1, no AB blood-type patient nor donor can be part of a $K$-way exchange. Therefore, the only triples that can be part of a $K$-way exchange are those where its patient’s and its donors’ blood types are in $\{O, A, B\}$. After excluding the compatible combinations, we are left with the triple types listed above.

Take any $K$-way exchange. Since every triple type listed above has at least an A or a B blood-type donor, the $K$-way exchange involves an A or a B blood-type patient. If it involves an A blood-type patient, then that patient brings in a B blood-type donor, so it must also involve a B blood-type patient. If it involves a B blood-type patient, then that patient brings in an A blood-type donor, so it must also involve an A blood-type patient.

We will make the following assumption about the $O-O-A$ and $O-O-B$ types in an exchange pool.
Definition 2 A lung exchange pool \( \mathcal{E} \) satisfies the long-run assumption if for every matching composed of arbitrary size exchanges, there is at least one \( O - O - A \) and one \( O - O - B \) type that do not take part in any exchange.

Suppose that the exchange pool \( \mathcal{E} \) satisfies the long-run assumption and \( \mu \) is a matching composed of arbitrary size exchanges. The long-run assumption ensures that we can create a new matching \( \mu' \) from \( \mu \) by replacing every \( O - A - A \) and \( O - B - A \) type taking part in an exchange by an unmatched \( O - O - A \) type, and every \( O - B - B \) type taking part in an exchange by an unmatched \( O - O - B \) type. Then, the new matching \( \mu' \) is composed of the same size exchanges as \( \mu \), and it induces the same number of transplants as \( \mu \). Furthermore, the only \( O \) blood-type patients matched under \( \mu' \) belong to the triples of types \( O - O - A \) or \( O - O - B \).

Let \( \bar{K} \geq 2 \) be the maximum allowable exchange size. Consider the problem of finding an optimal matching, i.e., one that maximizes the number of transplants when only \( 1; \ldots; \bar{K} \)-way exchanges are allowed. By the above paragraph, for any optimal matching \( \mu \), we can construct another optimal matching \( \mu' \) in which the only triples with \( O \) blood-type patients matched under \( \mu' \) belong to the types \( O - O - A \) or \( O - O - B \). Since by the long-run assumption, the numbers of \( O - O - A \) and \( O - O - B \) participants in the market is non-binding, an optimal matching can be characterized just in terms of the numbers of the six participating types in Lemma 2 that have \( A \) and \( B \) blood-type patients.

In the remainder of the section, we use this approach to describe a matching that achieves the maximum number of transplants when \( \bar{K} = 3 \). We next describe a collection of two and three-way exchanges. We will show in Lemma 3 that one can restrict attention to these exchanges in constructing an optimal matching.

![A Subset of Two- and Three-Way Exchanges](image_url)
Definition 3  Given a lung exchange pool $E$, consider the two and three-way exchanges in Figure 8 where:

1. A regular (i.e. non-bold/no dotted end) edge between two types represents a two-way exchange involving those two types.

2. A bold edge between two types represents a three-way exchange involving those two types and a $O - O - A$ or $O - O - B$ type.

3. An edge with a dotted end represents a three-way exchange involving two types from the dotted end, and one type from the non-dotted end.

A matching $\mu$ is Figure 8 consistent if it consists of the two and three-way exchanges described above.

Lemma 3 Suppose that the lung exchange pool $E$ satisfies the long-run assumption, and only two and three-way exchanges are allowed. Then, there is an optimal matching that is Figure 8 consistent.

Proof of Lemma 3: We first show that if a matching $\mu$ includes an exchange not represented in Figure 8, then there is a matching $\mu'$ that induces at least as many transplants and includes one less exchange excluded from Figure 8. To see this, take any exchange in $\mu$ not represented as an edge in Figure 8. The exchange must be at most three-way since no longer exchanges are allowed. Furthermore by Lemma 2, the exchange includes two types $A - Y - Z$ and $B - Y' - Z'$ that are vertices of Figure 8. To create the matching $\mu'$, we first undo this exchange in $\mu$, then create a weakly larger exchange which involves unmatched types and is represented as an edge in Figure 8.

Case 1: If there is a bold edge between the types $A - Y - Z$ and $B - Y' - Z'$ in Figure 8, then we create the three-way exchange that corresponds to that bold edge.

If there is no bold edge between $A - Y - Z$ and $B - Y' - Z'$ in Figure 8, then these types can not be $A - A - B$ and $B - B - A$, because the only allowable exchange involving $A - A - B$ and $B - B - A$ is the two-way exchange included in Figure 8. By an analogous argument, these types can also not be $A - B - B$ and $B - A - A$. This leaves out two more cases:

Case 2: “$A - Y - Z = A - A - B$ and $B - Y' - Z = B - A - A$”: The only allowable exchange involving these two types not represented in Figure 8 is the three-way exchange where the third participant is $A - O - B$. In this case, we create the three-way exchange that corresponds to the bold edge between the unmatched $A - O - B$ and $B - A - A$ types.
Case 3: \( A - Y - Z = A - B - B \) and \( B - Y' - Z = B - B - A \): We omit the argument for this case, since it is symmetric to Case 2.

By the finiteness of the problem, there is an optimal matching \( \mu_0 \) that is not necessarily Figure 8 consistent. By what we have shown above, we can construct an optimal matching \( \mu_1 \) that is Figure 8 consistent from the matching \( \mu_0 \), by iteratively replacing the exchanges that are excluded from Figure 8 with those that are included in it.

We will show that when the long-run assumption is satisfied, the following matching procedure maximizes the number of transplants through two and three-way exchanges. The procedure sequentially maximizes three subsets of two-way exchanges:

**Procedure 2 (Sequential Matching Procedure for Two- & Three-way Exchanges)**

**Step 1:** Carry out the two and three way exchanges in Figure 8 among \( A - A - B \), \( A - B - B \), \( B - B - A \), and \( B - A - A \) types to maximize the number of transplants subject to the following constraints (*):

1. Leave at least a total \( \min\{n(A - A - B) + n(A - B - B), n(B - O - A)\} \) of \( A - A - B \) and \( A - B - B \) types unmatched.
2. Leave at least a total \( \min\{n(B - B - A) + n(B - A - A), n(A - O - B)\} \) of \( B - B - A \) and \( B - A - A \) types unmatched.

**Step 2:** Carry out the maximum number of three-way exchanges in Figure 8 involving \( A - O - B \) types and the remaining \( B - B - A \) or \( B - A - A \) types. Carry out the maximum number of three-way exchanges in Figure 8 involving \( B - O - A \) types and the remaining \( A - A - B \) or \( A - B - B \) types.

**Step 3:** Carry out the maximum number of three-way exchanges in Figure 8 involving the remaining \( A - O - B \) and \( B - O - A \) types.

Procedure Figure 8 graphically illustrates the two and three-way exchanges that are carried out at each step of the sequential matching procedure.

We will show the optimality of the above procedure in Theorem 2. We first state a Lemma that will be used in proving Theorem 2.

**Lemma 4** Suppose that the lung exchange pool \( \mathcal{E} \) satisfies the long-run assumption and \( n(A - A - B) + n(A - B - B) > n(B - O - A) \). If a matching \( \mu \) is Figure 8 consistent and includes at least one three-way exchange involving an \( A - O - B \) and a \( B - O - A \) type, then
there is a matching $\mu'$ such that: (i) $\mu'$ is Figure 8 consistent, (ii) $\mu'$ induces at least as many transplants as $\mu$ and (iii) $\mu'$ includes one less three-way exchange involving an $A-O-B$ and a $B-O-A$ type compared to $\mu$.

**Proof of Lemma 4:** To construct $\mu'$, we first undo exactly one three-way exchange in $\mu$ that involves an $A-O-B$ and a $B-O-A$ type. In the following, we will call these $A-O-B$ and $B-O-A$ types, “the $A-O-B$ type” and “the $B-O-A$ type.” To finish constructing $\mu'$, we consider five cases:

**Case 1:** If there is an unmatched $A-A-B$ or $A-B-B$ type under $\mu$, then create a three-way exchange involving that type and the $B-O-A$ type.

If we do not fall into Case 1, then all $A-A-B$ and $A-B-B$ types are matched under $\mu$; but since $n(A-A-B) + n(A-B-B) > n(B-O-A)$, they cannot all be part of a three-way exchange with $B-O-A$ types. That leaves out four more cases:

**Case 2:** If an $A-A-B$ and a $B-B-A$ type are part of a two-way exchange under $\mu$, then undo that two-way exchange and create two new three-way exchanges, one involving the unmatched $A-A-B$ type and the $B-O-A$ type, and another involving the unmatched $B-B-A$ type and the $A-O-B$ type.

**Case 3:** If two $A-A-B$ types and a $B-B-A$ type are part of a three-way exchange under $\mu$, then undo that three-way exchange and create two new three-way exchanges, one involving one of the two unmatched $A-A-B$ types and the $B-O-A$ type, and another involving the unmatched $B-B-A$ type and the $A-O-B$ type.

**Case 4:** If an $A-B-B$ and a $B-A-A$ type are part of a two-way exchange under $\mu$, then undo that two-way exchange and create two new three-way exchanges, one involving the unmatched $A-B-B$ type and the $B-O-A$ type, and another involving the unmatched $B-A-A$ type and the $A-O-B$ type.

**Case 5:** If an $A-B-B$ type and two $B-B-A$ types are part of a three-way exchange under $\mu$, then undo that three-way exchange and create two new three-way exchanges, one involving the unmatched $A-B-B$ type and the $B-O-A$ type, and another involving
one of the two unmatched \(B - B - A\) types and the \(A - O - B\) type.

In each of the five cases considered above, the newly constructed matching \(\mu'\) satisfies (i)–(iii) in Lemma 4. 

\[\text{Theorem 2} \]
Given a lung exchange pool \(\mathcal{E}\) satisfying the long-run assumption, the above sequential matching procedure maximizes the number of transplants through two and three-way exchanges.

**Proof of Theorem 2:** Define the numbers \(K_A\) and \(K_B\) by:

\[K_A := n(A - O - B) - n(B - B - A) - n(B - A - A)\]

\[K_B := n(B - O - A) - n(A - A - B) - n(A - B - B)\]

We will consider two cases depending on the signs of \(K_A\) and \(K_B\).

**Case 1:** \(\max\{K_A, K_B\} \geq 0\):

Suppose without loss of generality that \(K_A \leq K_B\). Then, \(K_B = \max\{K_A, K_B\} \geq 0\). This implies, by the definition of \(K_B\), that \(n(B - O - A) \geq n(A - A - B) + n(A - B - B)\). Therefore, all \(A - A - B\) and \(A - B - B\) types participate in three-way exchanges with \(B - O - A\) types in Step 2 of the procedure.

The number of \(A - O - B\) types that are not matched in Step 2 is given by:

\[
n(A - O - B) - \min\{n(B - B - A) + n(B - A - A), n(A - O - B)\}
= \max\{n(A - O - B) - n(B - B - A) - n(B - A - A), 0\}
= \max\{K_A, 0\}
\leq K_B = n(B - O - A) - n(A - A - B) - n(A - B - B).
\]

As a result, the number of \(A - O - B\) types that are not matched in Step 2 is less than or equal to the number of \(B - O - A\) types that are not matched in Step 2. Therefore, all \(A - O - B\) types participate in three-way exchanges in Steps 2 and 3 of the procedure.

We have shown that the procedure creates at least \(3 \times [n(A - A - B) + n(A - B - B) + n(A - O - B)]\) transplants. Since each exchange consists of at most three participants and must involve an \(A\) blood-type patient, this is also an upper bound on the number of transplants through two and three-way exchanges. Therefore, the outcome of the procedure must be optimal.

**Case 2:** \(\max\{K_A, K_B\} < 0\):
By Lemma 3, there exists an optimal matching $\mu_0$ that is Figure 8 consistent. Since $K_B < 0$, we have $n(A - A - B) + n(A - B - B) > n(B - O - A)$. Therefore, we can iteratively apply Lemma 4 to $\mu_0$, to obtain an optimal and Figure 8 consistent matching $\mu_1$ that does not include a three-way exchange involving an $A - O - B$ and a $B - O - A$ type.

Let $\Delta_A$ denote the number of unmatched $A - O - B$ types in $\mu_1$. Since $K_A < 0$, i.e., $n(B - B - A) + n(B - A - A) > n(A - O - B)$, there is more than $\Delta_A$ many participants with $B - B - A$ or $B - A - A$ types, who do not take part in an exchange with $A - O - B$ types in $\mu_1$. Chose an arbitrary $\Delta_A$ many of these $B - B - A$ or $B - A - A$ participants, undo the exchanges they participate in under $\mu_1$, and create $\Delta_A$ new three-way exchanges involving these participants and the unmatched $A - O - B$ types.

Similarly, let $\Delta_B$ denote the number of unmatched $B - O - A$ types in $\mu_1$. Since $K_B < 0$, i.e., $n(A - A - B) + n(A - B - B) > n(B - O - A)$, there is more than $\Delta_B$ many participants with $A - A - B$ or $A - B - B$ types, who do not take part in an exchange with $B - O - A$ types in $\mu_1$. Chose an arbitrary $\Delta_B$ many of these $A - A - B$ or $A - B - B$ participants, undo the exchanges they participate in under $\mu_1$, and create $\Delta_B$ new three-way exchanges involving these participants and the unmatched $B - O - A$ types.

The new matching $\mu_2$ obtained from $\mu_1$ in the above manner is Figure 8 consistent. Furthermore $\mu_2$ induces at least as many transplants as $\mu_1$, therefore it is also optimal. Note also that under $\mu_2$, all $A - O - B$ types take part in a three-way exchange with $B - B - A$ or $B - A - A$ types, and all $B - O - A$ types take part in a three-way exchange with $A - A - B$ or $A - B - B$ types.

Let $\mu$ denote an outcome of the sequential matching procedure described in the text. Since $K_A, K_B < 0$, the constraint (*) in Step 1 becomes equivalent to:

1. Leave at least a total $n(B - O - A)$ of $A - A - B$ and $A - B - B$ types unmatched.
2. Leave at least a total $n(A - O - B)$ of $B - B - A$ and $B - A - A$ types unmatched.

Therefore in Step 2 of the procedure, all $A - O - B$ types take part in a three-way exchange with $B - B - A$ or $B - A - A$ types, and all $B - O - A$ types take part in a three-way exchange with $A - A - B$ or $A - B - B$ types. This implies that the total number of transplants from exchanges involving $A - O - B$ or $B - O - A$ types is the same ($= 3 \times [n(A - O - B) + n(B - O - A)]$) for both matchings $\mu_2$ and $\mu$.

The restriction of the matching $\mu_2$ to the two and three-way exchanges represented as edges among $A - A - B$, $A - B - B$, $B - B - A$, and $B - A - A$ types in Figure 8, respects the constraint (*). Therefore, the total number of transplants in $\mu_2$ from exchanges not involving $A - O - B$ nor $B - O - A$ types cannot exceed the total number of transplants in Step 1.
of the procedure leading to $\mu$. As a result, the total number of transplants under $\mu$ is at least as large as the total number of transplants under $\mu_2$, implying that $\mu$ is also optimal.

4 Unrestricted Exchange Size

In this section, we inspect optimal matchings when there are no exchange size restrictions. In particular, we answer three questions: (1) what is the smallest exchange size we can always use to find an optimal matching under no size constraints, (2) what is the maximum number of patients that can be matched in an exchange pool, and (3) is there a straightforward intuitive procedure to find an optimal matching.

Before delving into the analysis, we introduce some new terminology. For a given exchange pool $\mathcal{E}$, we refer to an exchange pool $\mathcal{K} \leq \mathcal{E}$ as a sub-pool of $\mathcal{E}$. We fix a lung exchange pool $\mathcal{E}$ throughout the section. Given a sub-pool $\mathcal{K}$ let $d_X[\mathcal{K}]$ be the number $X$ blood-type donors in $\mathcal{K}$ and $p_X[\mathcal{K}]$ as the number of $X$ blood-type patients in $\mathcal{K}$. We also use $n(X - Y - Z)[\mathcal{K}]$ to denote the number of $X - Y - Z$ type triples in $\mathcal{K}$ (while we omit the arguments of these expressions if $\mathcal{K} = \mathcal{E}$). For a sub-pool $\mathcal{K}$, by a slight abuse of notation, let $|\mathcal{K}|$ be the total number of triples in $\mathcal{K}$. Given a matching $\mu$, we will sometimes denote the sub-pool of triples matched through it also as $\mu$, with a slight abuse of notation.

We denote by $\mathcal{E}_X$ for any $X \in \{A, B\}$, the triple types of that are essential for exchange such that the patient’s blood type is $X$:

$$\mathcal{E}_A := \{ A - B - A , A - O - B , A - B - B \}, \text{ and}$$

$$\mathcal{E}_B := \{ B - A - B , B - O - A , B - A - A \}.$$  

That is, for any exchange at least one triple with a type in $\mathcal{E}_A$ and one triple with a type in $\mathcal{E}_B$ is needed by Lemma 2. Let $\mathbb{T} \subseteq \mathcal{B}^3$ be all triple types that are exchange eligible (i.e., not compatible). Let $\mathcal{E}_{\mathcal{E}_A \cup \mathcal{E}_B} \leq \mathcal{E}$ be the sub-pool with only essential type triples.

We first state and prove some intermediate results and intermediate procedures in finding optimal matchings in certain exchange sub-pools.

The first lemma will be the most crucial intermediate result and it will reduce the problem and enable us to focus only on essential type triples in constructing an optimal matching:

**Lemma 5** Suppose that $\mathcal{E}$ satisfies the long-run assumption and $\mu$ is an optimal matching (without any exchange size constraints) within the essential type sub-pool $\mathcal{E}_{\mathcal{E}_A \cup \mathcal{E}_B}$. Suppose
further that \( \mu \) matches the maximum possible number of \( A - O - B \) and \( B - O - A \) type triples that can be matched in any matching.

- Then \( \mu \) can be modified to obtain a matching \( \nu \) such that \( n(A - O - B)[\mu] + n(B - O - A)[\mu] \)-many \( O - O - A \) and \( O - O - B \) type triples can be matched in addition to all triples matched by \( \mu \).

- Moreover, \( \nu \) is an optimal matching of \( E \) without any size constraints.

**Proof of Lemma 5:** Observe that since \( \mu \) constitute a feasible matching, the supply of donors in \( \mu \) that are compatible with \( A \) blood-type patients should be at least as large as the number of \( A \) blood-type patients in \( \mu \); and a similar statement holds for \( B \) blood-type patients. Thus we have \( d_A[\mu] + d_O[\mu] \geq 2p_A[\mu] \) and \( d_B[\mu] + d_O[\mu] \geq 2p_B[\mu] \). The first inequality implies, for \( A \) blood-type patients,

\[
\geq 2n(A - O - B)[\mu] + 2n(A - B - B)[\mu] + 2n(A - B - A)[\mu],
\]

which in turn implies

\[
\kappa_A := 2n(B - O - A)[\mu] + 2n(B - A - A)[\mu] + n(B - A - B)[\mu] \\
\geq n(A - O - B)[\mu] + 2n(A - B - B)[\mu] + n(A - B - A)[\mu] =: \lambda_A. \tag{1}
\]

Similarly for \( B \) blood-type patients, we obtain

\[
\kappa_B := 2n(A - O - B)[\mu] + 2n(A - B - B)[\mu] + n(A - B - A)[\mu] \\
\geq n(B - O - A)[\mu] + 2n(B - A - A)[\mu] + n(B - A - B)[\mu] =: \lambda_B. \tag{2}
\]

By the long-run assumption there are \( \kappa_A - \lambda_A \)-many triples of type \( O - O - A \) and \( \kappa_B - \lambda_B \)-many triples of type \( O - O - B \). Suppose such a sub-pool be referred to as \( \mathcal{L} \). Observe that \( (\kappa_A - \lambda_A) + (\kappa_B - \lambda_B) = n(A - O - B)[\mu] + n(B - O - A)[\mu] \). Thus, the supply-demand relation of for \( O \) blood-type patients in \( \mathcal{K} = \mu + \mathcal{L} \) will be

\[
d_O[\mathcal{K}] = 2n(A - O - B)[\mu] + 2n(B - O - A)[\mu] = 2p_O[\mathcal{K}]. \tag{3}
\]

Hence, we have to commit all \( O \) blood-type donors to \( O \) blood-type patients in \( \mathcal{K} \). For \( A \) blood-type patients, we can only commit \( A \) blood-type donors, and then the supply-demand
relation for $A$ blood-type patients in the sub-pool $\mathcal{K} = \mu + \mathcal{L}$ will be

$$d_A[\mathcal{K}] = 2n(B - A - A)[\mu] + n(A - B - A)[\mu] + n(B - A - B)[\mu] + n(O - O - A)[\mathcal{L}];$$

and

$$2p_A[\mathcal{K}] = 2n(A - O - B)[\mu] + 2n(A - B - A)[\mu] + 2n(A - B - B)[\mu].$$

Observe that $d_A[\mathcal{K}] = 2p_A[\mathcal{K}]$. Thus, we can match all $A$ blood-type patients with $A$ blood-type donors within $\mathcal{K}$.

By symmetry, we obtain a similar result for the supply-demand relationship for $B$ blood-type patients: $d_B[\mathcal{K}] = 2p_B[\mathcal{K}]$. Thus, we can match all $B$ blood-type patients with $B$ blood-type donors within $\mathcal{K}$. Hence $\mathcal{K}$ induces a matching $\nu$ so that all patients in $\mathcal{K}$ receive transplants entirely from donors in $\mathcal{K}$ of the same blood-type.

For the second part of the lemma, we first prove the following two claims:

**Claim 1**: Using the triples matched in $\mu$ we cannot construct a matching that matches more triples than $\nu$ does.

**Proof**: By Lemma 2 the types of triples that can be part of a feasible exchange except the essential types are $O - O - A$, $O - O - B$, $O - A - A$, $O - A - B$, $O - B - A$. First, we focus on these in constructing possible $\mathcal{L}'$ sub-pools. Also by the same lemma, each exchange should at least have one triple from $\mathcal{E}_A$ and one triple from $\mathcal{E}_B$. Hence, triples in $\mathcal{L}'$ cannot be matched in exchanges themselves and can only be matched through the triples in $\mathcal{E}_{\mathcal{E}_A \cup \mathcal{E}_B}$. There are $n(A - O - B)[\mu] + n(B - O - A)[\mu]$-many $O$ blood-type donors matched by $\mu$. Therefore, using patients matched in $\mu$, the maximum number of new triples we can match from the types in $\mathcal{E} \setminus (\mathcal{E}_A \cup \mathcal{E}_B)$ is $n(A - O - B)[\mu] + n(B - O - A)[\mu] = |\mathcal{L}|$, establishing that no more triples than $|\mathcal{L}|$ can be additionally matched over $|\mu|$ through some matching of the triples in the sub-pool $\mu + (\mathcal{E} \setminus \mathcal{E}_{\mathcal{E}_A \cup \mathcal{E}_B})$. QED

**Claim 2**: For any matching $\eta$, we can construct another matching using only the essential type triples matched by $\eta$.

**Proof**: By Lemma 2, besides the essential type triples, the triples of the types $O - A - B$, $O - A - A$, $O - B - B$, $O - O - A$, and $O - O - B$ can participate in exchange. Take a patient of a triple matched in $\eta$ of one of these types. Observe that as she is of blood-type $O$, she receives grafts from either two or one $O$ blood-type donors of some other patient say donor $d_1$ (and possibly $d_2$), and in return she exports one or two donors to other patient in $\eta$, say patient $p_1$ (and possibly $p_2$). We can simply take it out of $\eta$ and form a new matching
Let \( \eta' \) by \( d_1 \) donating to \( p_1 \) (and possibly \( d_2 \) donating to \( p_2 \)) and rest of the transplants remain in tact as in \( \eta \). We repeat this procedure for all triples of types \( O - A - B \), \( O - A - A \), \( O - B - B \), \( O - O - A \), and \( O - O - B \) in the remaining matchings, iteratively. The final matching is feasible and consists of only essential type triples of \( \eta \). QED

We are ready to show that matching \( \nu \) constructed in the first part of the proof is optimal. Suppose by contradiction \( \nu \) is not optimal and a matching \( \eta' \) can be constructed that matches only essential type triples of \( \eta \). The hypothesis of the lemma states that \( \mu \) also matches the maximum number of \( A - O - B \) and \( B - O - A \) type triples that can be matched in any matching. Therefore, \( \eta \) cannot have more non-essential type triples matched than \( \mu \) by the first part of the Lemma and Claim 1. Hence, \( \nu \) should have more essential type triples than \( \mu \) does. However, this is a contradiction to \( \mu \) being an optimal matching of essential type of triples.■

The intuition behind Lemma 5 can be explained as follows:

When there are no \( O \) blood-type patients in a matching, an \( A - O - B \) type triple in the matching can be thought of playing the role of an \( A - B - A \) or an \( A - B - B \) triple, as the \( O \) blood-type donor goes to either an \( A \) blood-type patient or a \( B \) blood-type patient. Depending on which role such a triple plays in a particular exchange, we can actually add an additional triple under the long-run assumption from the excess triples and match every other triple we were matching before. Hence, for example, if an \( A - O - B \) type triple is treated as an \( A - B - A \) type triple in such a matching, then this \( A - O - B \) type triple together with an \( O - O - A \) type triple can also be treated a type \( A - B - A \) triple and this \( O - O - A \) triple can be inserted in the matching at no cost. That is to say, the pair of triples \( \begin{bmatrix} A - O - B \\ O - O - A \end{bmatrix} \) supplies a \( B \) blood-type donor to outside world while they demand a donor compatible with an \( A \) blood-type patient, assuming that the \( O \) blood-type patient in this pair of triples is assigned the two \( O \) blood-type donors of these two triples, and \( A \) blood-type patient is assigned the \( A \) blood-type donor. Hence, no longer these \( O \) blood-type donors and \( A \) blood-type donor are available to triples in the outside world, and only one patient remains demanding a single donor from the outside world. This is the same characteristic with a single \( A - B - A \) type triple. Similarly, an \( A - O - B \) triple together with an \( O - O - B \) triple can be treated as a \( A - B - B \) triple in an exchange, if the \( A - O - B \) triple was originally treated as an \( A - B - B \) type in the exchange. The same analogy extends to \( B - O - A \) type triples. Such a triple together with an \( O - O - A \) triple can be treated as a \( B - A - A \) triple and it together with an \( O - O - B \) triple can be treated as a \( B - A - B \) triple.
triple in the exchange.

If we can show that it is possible to construct a matching $\mu$, which simultaneously matches

1. the maximum number of $A - O - B$ and $B - O - A$ type triple in any possible matching, and

2. the maximum number of essential type triples,

then using Lemma 5, we can construct an optimal matching using $\mu$ and it matches $|\mu| + n(A - O - B)[\mu] + n(B - O - A)[\mu]$ triples receiving transplants. This will also give us the optimal number of triples that can be matched through lung exchange using unrestricted sizes of exchanges.

Hence, our goal is to reach the above two goals. Before that, for a moment, suppose that there are no $A - O - B$ and $B - O - A$ type triples. Thus, we are trying to form an optimal matching entirely consisting of exchanges with $A - B - A$, $B - A - B$, $A - B - B$, and $B - A - A$ type triples. As $A - O - B$'s and $B - O - A$'s are treated like these four triple types in a matching consisting of essential type triples, it will be important to know how to construct an optimal matching for triples of only these 4 types.

We find the sufficient types of exchanges to match the optimal number of such triples from types $A - B - A$, $B - A - B$, $A - B - B$, and $B - A - A$. We will prove them these are sufficient later. We state them as follows:

Type 1. An $A - B - A$ and a $B - A - B$ type triple can be matched with each other in a 2-way exchange:

$$
\begin{align*}
A - B - A \\
B - A - B
\end{align*}
$$

Type 2. An $A - B - B$ type triple can be matched in a 3-way exchange with two $B - A - B$ triples. Similarly a $B - A - A$ type triple can be matched in a 3-way exchange with two $A - B - A$ type triples:

$$
\begin{align*}
A - B - B & \quad B - A - A \\
B - A - B \times 2 & \quad A - B - A \times 2
\end{align*}
$$

Type 3. An $A - B - B$ and a $B - A - A$ type triple can be matched with each other in a 2-way exchange:

$$
\begin{align*}
A - B - B \\
B - A - A
\end{align*}
$$
Using these three types of exchanges, we propose the following sequential procedure:


**Step 1:** Match as many \(A-B-A\) type triples in 2-way exchanges (of Type 1 above) with \(B-A-B\) type triples.

**Step 2:** Either \(A-B-A\) or \(B-A-B\) type triples may remain, but not both.

- If multiple \(A-B-A\) triples remain, match each pair of remaining \(A-B-A\) triples in 3-way exchanges (of Type 2 above) with a single \(B-A-A\) triple, as long as it is possible.
- If multiple \(B-A-B\) triples remain, match each pair of remaining \(B-A-B\) triples in 3-way exchanges (of Type 2 above) with a single \(A-B-B\) triple, as long as it is possible.

**Step 3:** Match as many remaining \(A-B-B\) type triples in 2-way exchanges (of Type 3 above) with \(B-A-A\) type triples, as long as it is possible.

Next, we define two non-negative numbers for triples in \(E_{E_A \cup E_B}\). These tell us the minimum (\(s_A\)) and maximum (\(\bar{s}_A\)) numbers of donors compatible with \(B\) blood-type patients that can be supplied by patients with \(A\) blood-type patients:

\[
\begin{align*}
\underline{s}_A &:= n(A - O - B) + n(A - B - A) + 2n(A - B - B) \\
\overline{s}_A &:= 2n(A - O - B) + n(A - B - A) + 2n(A - B - B)
\end{align*}
\]

Here, \(\underline{s}_A\) assumes that all \(A-O-B\) type triples are treated like \(A-B-A\) types and hence, the \(O\) blood-type donor can be utilized internally. Hence, each \(A-O-B\) type triple requires one donor from outside, so does each \(A-B-A\) triple. On the other hand, each \(A-B-B\) type triple needs 2 donors from outside.

In calculation of \(\overline{s}_A\), we treat \(A-O-B\) type triples like \(A-B-B\)'s. Therefore, each of them requires 2 donors from outside instead of 1.

Symmetrically, we define \(\underline{s}_B\) and \(\overline{s}_B\). Observe that

\[
\overline{s}_A - \underline{s}_A = n(A - O - B),
\]

and

\[
\overline{s}_B - \underline{s}_B = n(B - O - A).
\]

\(^3\)We add the argument \(K\) when these numbers, \(\underline{s}_A\) and \(\overline{s}_A\) are defined for a sub-pool \(K \leq E_{E_A \cup E_B}\) instead of the main exchange pool and denote them as \(\underline{s}_A[K]\) and \(\overline{s}_A[K]\).
We define an procedure using these numbers through the intuition given above:


**Group:** Two cases are possible for $\xi_A$, $\xi_A$, $\xi_B$, $\xi_B$ defined in Equations 4 and 5.

**Case 1.** $\xi_B \geq \xi_A$ and $\xi_A \geq \xi_B$:
Fix $0 \leq n_A^* \leq n(A - O - B)$ and $0 \leq n_B^* \leq n(B - O - A)$ such that $n_A^* = \xi_A - \xi_B + n_B^*$:
1. Group $n_A^*$-many $A - O - B$ type triples with $A - B - A$ types and the rest with $A - B - B$ types.

**Case 2.** $\xi_A < \xi_B$ or $\xi_B < \xi_A$: Two subcases are possible:

(a) If $\xi_B < \xi_A$ then:
1. Group all $A - O - B$ type triples (that is, $\xi_A - \xi_A$ many) with $A - B - A$ types.
2. Group all $B - O - A$ type triples (that is $\xi_B - \xi_B$ many) with $B - A - A$ types.

(b) If $\xi_A < \xi_B$ then:
1. Group all $B - O - A$ type triples (that is, $(\xi_B - \xi_B)$-many) with $B - A - B$ types.
2. Group all $A - O - B$ type triples (that is $(\xi_A - \xi_A)$-many) with $A - B - B$ types.

We refer to all $X - O - Y$ triples grouped with $X - Y - Z$ triples and all $X - Y - Z$ triples in $K$ as $X - Y - Z$-like group.

**Match:** Use Procedure 3 by treating all $X - Y - Z$-like group triples as if they were $X - Y - Z$ type, with three caveats:

(1) In each step of Procedure 3, start with the triples of type $A - O - B$ (or $B - O - A$) in the $A - B - A$-like group (or $B - A - B$-like group) and do not match real $A - B - A$’s (or $B - A - B$’s) before matching all grouped $A - O - B$’s (or $B - O - A$’s).

(2) If all $B - A - B$-like triples are matched, and an odd number of $A - O - B$ type triples and no $A - B - A$ type triples remain in the $A - B - A$-like group after Step 1 of Procedure 3: **Treat** the last of such $A - O - B$ type
Step 1

Step 2

Step 3

Every patient is matched.

Figure 10: Case 1 and Case 2(a) (for $s_A > s_B$) of Group and Match Procedure (Procedure 4). Here, $\alpha_A = \frac{n^*_A}{n(A-O-B)}$ is the ratio of $A-O-B$ types grouped with $A-B-A$ types and $\alpha_B$ is similarly defined. Each solid line represents two-way exchanges, and each solid line with a circle at the end represents three-way exchanges in each of which two triples participate from the group that is pointed by the circular end. Only one of the two kind three-way exchanges will be conducted in Step 2 in each subfigure.

Figure 10 summarizes how the group and match procedure works, along with its consequences (to be proven in Propositions 1 and 2 below). This procedure is embedded in the optimal matching procedure as follows:

(3) If all $A-B-A$-like triples are matched, and an odd number of $B-O-A$ type triples and no $B-A-B$ type triples remain in the $B-A-B$-like group after Step 1 of Procedure 3: Treat the last of such $B-O-A$ type triples as an $B-A-A$ type and handle it in Step 3 of the Procedure with the other $B-O-A$ types in the $A-B-B$-like group.

Figure 10 summarizes how the group and match procedure works, along with its consequences (to be proven in Propositions 1 and 2 below). This procedure is embedded in the optimal matching procedure as follows:
Procedure 5 (Sequential Matching Procedure without Size Constraints)

**Step 1:** Use Procedure 4, **Group and Match**, to match triples of types $E_A \cup E_B$.

**Step 2:** In any exchange determined in this matching, for each $A-O-B$ or $B-O-A$ type triple in the exchange, insert an $O-O-A$ or an $O-O-B$ type triple using Lemma 5.

Before proving the optimality of Procedure 5, we find an upper-bound to the number of triples that can be matched in an exchange pool:

**Lemma 6 (Upper-bound Lemma)** Consider the sub-pool $E_{E_A \cup E_B}$. Then $\overline{m}$, defined below, is an upper bound to the number of triples that can be matched in a matching only consisting of triples in $E_{E_A \cup E_B}$:

$$\overline{m} := \overline{m}_A + \overline{m}_B \text{ where}$$

$$\overline{m}_A := \min \left\{ p_A[E_{E_A \cup E_B}], \left[ \frac{d_A[E_{E_A \cup E_B}] + d_O[E_{E_A \cup E_B}]}{2} \right], \overline{s}_B \right\} \text{ and}$$

$$\overline{m}_B := \min \left\{ p_B[E_{E_A \cup E_B}], \left[ \frac{d_B[E_{E_A \cup E_B}] + d_O[E_{E_A \cup E_B}]}{2} \right], \overline{s}_A \right\} .$$

**Proof of Lemma 6:** The first term in $\overline{m}_A$, $p_A[E_{E_A \cup E_B}]$, is the number of $A$ blood-type patients and the second term, $\left[ \frac{d_A[E_{E_A \cup E_B}] + d_O[E_{E_A \cup E_B}]}{2} \right]$, is the maximum number of $A$ blood-type patients that can receive two lobes from donors that are compatible with $A$ blood-type patients, i.e., $O$ and $A$ blood-type donors in $E_{E_A \cup E_B}$. Hence, each of them is an upper-bound for the number of triples with $A$ blood-type patients in $E_{E_A \cup E_B}$ that can receive transplant. Next consider the third term, $\overline{s}_B = n(B - A - B) + 2n(B - O - A) + 2n(B - A - A)$ is the maximum number of $A$ blood-type donors that the $B$ blood-type patients can provide for the triples with $A$ blood-type patients in $E_{E_A \cup E_B}$. Each triple with an $A$ blood-type patient in $E_{E_A \cup E_B}$ requires at least one $A$ or $O$ blood-type donor coming from another triple to be matched feasibly, as it can at most provide one compatible donor for itself. To the contrary assume that, there exists a perfect matching for some sub-pool $L \leq E_{E_A \cup E_B}$ such that $p_A[L] > \overline{s}_B$. Hence, each of the triples with $A$ blood-type patients in $L$ requires itself one or more $A$ or $O$ blood-type donors from other triples, while additionally at most $\overline{s}_B$-many $A$ or $O$ blood-type donors are feasible within $E_{E_A \cup E_B}$. This is a contradiction to the fact that triples in $L$ can form a feasible matching. Hence, $\overline{s}_B$ is also an upper bound to the number of $A$ blood-type patients that can be matched within $E_{E_A \cup E_B}$, establishing the formula for $\overline{m}_A$. 

26
The argument is the same in $m_B$ for $B$ blood-type patients. There are no triples with $AB$ or $O$ blood-type patients in $E_A \cup E_B$. This concludes the proof and establishes $m$ as an upper bound.

We will prove that the upper-bound found above is almost tight, and group and match procedure matches always at least one less patient than $m$ upper-bound, and sometimes matches exactly $m$ patients. Moreover, we show that when group and match finds 1-approximate matching to the upper-bound, no more triples can be matched among the essential type triples; and thus, group and match is an optimal matching procedure for the essential types.

**Proposition 1** Consider the sub-pool $E_A \cup E_B$. An optimal matching without any exchange size constraints within $E_A \cup E_B$ exactly matches $m$ or $m-1$ patients, and moreover, Procedure 4, Group and Match, finds such an optimal matching.

**Proof of Proposition 1:** Suppose for simplicity of notation that $E = E_A \cup E_B$, i.e. the exchange pool only consists of triples in $E_A \cup E_B$. Let $\tilde{n}(X - Y - Z)$ refer to the number of $X - Y - Z$-like triples determined after the Group stage of Group and Match Procedure for all $\{X, Y\} = \{A, B\}$ and $Z \in \{A, B\}$.

**Case 1.** $\xi_A \leq \tilde{\xi}_B$ and $\xi_B \leq \tilde{\xi}_A$: Without loss of generality assume $\tilde{n}(A - B - A) \geq \tilde{n}(B - A - B)$ (the other case is symmetric). Then Match-Step 1 stage of the procedure, all $B - A - B$-like triples are matched with $A - B - A$-like triples in (Type-1) 2-way exchanges. We will prove that all triples and hence, $m$ triples are matched by the procedure.

Without loss of generality assume that

$$\Delta := \tilde{n}(A - B - A) - \tilde{n}(B - A - B) \geq 0.$$ 

We claim that the procedure matches all triples. We first show that $\Delta$ is even, and hence, in Step 2 of the procedure no $A - O - B$ types from the $A - B - A$-like group would be reassigned to the $A - B - B$-like group:

$$\Delta = n^*_A + n(A - B - A) - n^*_B - n(B - A - B)$$

$$= \tilde{\xi}_B - \tilde{\xi}_A + n(A - B - A) - n(B - A - B)$$

$$= 2(n(A - B - B) + n(A - O - B) - n(B - A - A) - n(B - O - A))$$

Next, we write down the number of $B - A - A$-like triples would be needed to match
Thus, all $B - A - A$-like triples are just sufficient to match all remaining $A - B - A$-like triples in Step 2 and all $A - B - B$-like triples in Step 3. Hence, all triples, i.e., $|\mathcal{E}|$-many of them, are matched through the procedure. Thus, we also have the upper-bound $\overline{m} = |\mathcal{E}|$.

**Case 2.** $\overline{s}_A > \overline{s}_B$ or $\overline{s}_B > \overline{s}_A$: Without loss of generality we prove it only for $\overline{s}_A > \overline{s}_B$ (Case 2(a)), the other one is symmetric. In the group stage all $A - O - B$ type triples are grouped with $A - B - A$’s and all $B - O - A$ type triples are grouped with $B - A - A$’s. There are two subcases: $\tilde{n}(A - B - A) + n(A - O - B) \geq n(B - A - B) = \tilde{n}(B - A - B)$ and $\tilde{n}(A - B - A) + n(A - O - B) < n(B - A - B) = \tilde{n}(B - A - B)$.

**Subcase 1.** $\tilde{n}(A - B - A) = n(A - B - A) + n(A - O - B) \geq n(B - A - B) = \tilde{n}(B - A - B)$: We will prove that $\overline{m}$ triples are matched by the procedure, and hence, the procedure finds an optimal matching.

First observe that all $B - A - B$ type triples are matched in Step 1 of the Match stage of Group and Match. Let $\Delta := n(A - B - A) + n(A - O - B) - n(B - A - B)$. In Step 2, if $\Delta$ is odd and there are no $A - B - A$ type triples, the last of the $A - O - B$ type triples left in Step 2 is treated like the first prioritized $A - B - B$ type in Step 3. In any case as $\overline{s}_A > \overline{s}_B$, all $B$ blood-type patients are matched. Moreover,

$$a := \underbrace{n(B - A - B)}_{\text{in Step 1}}$$

$$+ 2 \min \left\{ \underbrace{n(B - A - A) + n(B - O - A)}_{\text{in Step 2}} - \left\lfloor \frac{\Delta}{2} \right\rfloor, \left\lfloor \frac{\Delta}{2} \right\rfloor \right\}$$

$$+ \max \left\{ 0, \underbrace{n(B - A - A) + n(B - O - A)}_{\text{in Step 3}} - \left\lfloor \frac{\Delta}{2} \right\rfloor \right\}$$

$A$ blood-type patients are matched.
Observe that $\overline{m}_B = p_B$, as all $B$ blood-type patients can be matched. We claim that $a = \overline{m}_A$. If $a = \overline{m}_A$, then this will prove that Group and Match Procedure matches upper-bound $\overline{m} = \overline{m}_A + \overline{m}_B$ triples in $K$, concluding this subcase's proof. Now, we have $a \leq \overline{m}_A$, the upper bound by Lemma 6. Recall that,

$$\overline{m}_A = \min \left\{ p_A, \left\lfloor \frac{d_A + d_O}{2} \right\rfloor, \overline{s}_B \right\}$$

$$p_A = n(A - B - A) + n(A - O - B) + n(A - B - B),$$

$$\left\lfloor \frac{d_A + d_O}{2} \right\rfloor = n(B - A - A) + n(B - O - A) + \left\lfloor \frac{n(A - B - A) + n(A - O - B) + n(B - A - B)}{2} \right\rfloor$$

$$\overline{s}_B = n(B - A - B) + 2n(B - O - A) + 2n(B - A - A)$$

Consider the following two cases:

If $n(B - A - A) + n(B - O - A) \geq \left\lfloor \frac{\Delta}{2} \right\rfloor$, then

$$\overline{m}_A \geq a = n(B - A - B) + \left\lfloor \frac{n(A - B - A) + n(A - O - B) - n(B - A - B)}{2} \right\rfloor$$

$$+ n(B - A - A) + n(B - O - A)$$

$$= \left\lfloor \frac{d_A + d_O}{2} \right\rfloor \geq \overline{m}_A.$$ 

If $n(B - A - A) + n(B - O - A) < \left\lfloor \frac{\Delta}{2} \right\rfloor$, then

$$\overline{m}_A \geq a = n(B - A - B) + 2n(B - O - A) + 2n(B - A - A) = \overline{s}_B \geq \overline{m}_A.$$ 

Hence, in either case, we have $a = \overline{m}_A$.

**Subcase 2.** $\widetilde{n}(A - B - A) = n(A - B - A) + n(A - O - B) < n(B - A - B) = \widetilde{n}(B - A - B)$:

We will prove that $\overline{m}$ or $\overline{m} - 1$ triples are matched by the procedure and that the procedure finds an optimal matching.

First observe that all $A - B - A$-like triples are matched in Step 1 of the Match stage of Group and Match. Let $\Delta := n(B - A - B) - n(A - B - A) - n(A - O - B)$. In Step 2, if $\Delta$ is odd, the last of the $B - A - B$ type triples left in Step 2 is unmatched and the rest are matched with $A - B - B$ type triples in 3-way exchanges as $\underline{s}_A > \overline{s}_B$. In Step 3, all $B - A - A$-like triples are matched with $A - B - B$ type triples in 2-way exchanges as $\underline{s}_A > \overline{s}_B$. Hence, all $B$ blood-type patients, but at most one, are matched. We claim that this is the most number of $B$ blood-type patients that can be matched.
Suppose the procedure matches $p_B - 1$-many $B$ blood-type patients. Then $\Delta$ is odd. All $B$ blood-type patients collectively provide at most $\bar{z}_B = n(B - A - B) + 2n(B - A - A) + 2n(B - O - A)$ donors to $A$ blood-type patients. Therefore, we can at most match all $A - B - A$’s and all $A - O - B$’s each of which demand one $A$ blood-type donor from outside (since $n(A - B - A) + n(A - O - B) < n(B - A - B)$ this is feasible), and with the remainder of the $A$ blood-type donors we can at most match $\bar{r}_A := \left\lfloor \frac{n(B - A - B) + 2n(B - A - A) + 2n(B - O - A) - n(A - B - A) - n(A - O - B)}{2} \right\rfloor$-many $A - B - B$’s. Observe that $\bar{r}_A = n(B - A - A) + n(B - O - O) + \left\lfloor \frac{\Delta}{2} \right\rfloor$. Since $\Delta$ is odd, one of the $A$ blood-type donors provided by one of the $B$ blood-type patients is not used in this upper-bound, and to match the maximum number of $B$ blood-type patients, that $A$ blood-type donor should come from a $B - A - B$ triple, the type with $B$ blood-type patient, which supplies the least number of donors compatible with $A$ blood-type patients per triple, i.e., one. Thus, to match the maximum number of $A$ blood-type patients, at least one $B$ blood-type patient will never be used. Since the procedure matches $p_B - 1$-many $B$ blood-type patients, it should be matching the maximum possible number of $B$ blood-type patients.

Moreover,

$$a := n(A - B - A) + n(A - O - B) + \left\lfloor \frac{\Delta}{2} \right\rfloor + n(B - A - A) + n(B - O - O)$$

in Step 1

$$= n(B - A - A) + n(B - O - A) + \left\lfloor \frac{n(B - A - B) + n(A - O - B) + n(A - B - A)}{2} \right\rfloor$$

in Step 2

A blood-type patients are matched. Moreover, observe that $\left\lfloor \frac{d_A + d_O}{2} \right\rfloor = a$. Since we have $a \leq \bar{m}_A \leq \left\lfloor \frac{d_A + d_O}{2} \right\rfloor$ for the upper bound by Lemma 6 for $A$ blood-type patients, we get $a = \bar{m}_A$. Hence, the maximum number of $A$ blood-type patients are matched by the procedure, finishing the proof of this subcase.

Note that, in the group and match procedure, whenever we can, we prioritized $A - O - B$ and $B - O - A$ type triples in their group (in caveat 1 of Step 2 of the procedure). There is a reason for that. Next, we prove that not only Group and Match finds and optimal matching within $E_\mathcal{G}_A \cup E_B$, but also matches the maximum number of $A - O - B$ and $B - O - A$ type triples possible.
Proposition 2 Consider $\mathcal{E}_{E_A \cup E_B}$, i.e., the sub-pool with types only from $E_A \cup E_B$. Procedure 4, Group and Match, matches the maximum number of $A-O-B$ and $B-O-A$ type triples possible in any matching within $\mathcal{E}_{E_A \cup E_B}$; and these numbers are $\min\{n(A-O-B), \overline{s}_B\}$ and $\min\{n(B-O-A), \overline{s}_A\}$, respectively.

Proof of Proposition 2: We first show that group and match procedure matches $\min\{n(A-O-B), \overline{s}_B\}$- and $\min\{n(B-O-A), \overline{s}_A\}$-many $A-O-B$ and $B-O-A$ type triples, respectively. Consider $A-O-B$ type triples. Define $\kappa := \min\{n(A-O-B), \overline{s}_B\}$.

1. If Case 1 holds (in the group stage of the procedure), i.e., $\underline{s}_A < \overline{s}_B$ and $\underline{s}_B < \overline{s}_A$: Then all triples are matched by the procedure (by the proof of Proposition 1). Hence $n(A-O-B)$-many $A-O-B$ type triples are matched. We have $\overline{m}_A$-many $A$ blood-type patients are matched by Lemma 6. Since $n(A-O-B) \leq \overline{m}_A \leq \overline{s}_B$, $\kappa$-many $A-O-B$ type triples are matched.

2. If Case 2 holds, i.e., $\underline{s}_A > \overline{s}_B$ or $\underline{s}_B > \overline{s}_A$: Then there are two subcases:

(a) If $\underline{s}_A > \overline{s}_B$: Then $B-O-A$’s are treated like $B-A-A$’s, while $A-O-B$’s are treated like $A-B-A$’s. By Lemma 6, we match either $\overline{m}_A$- or $\overline{m}_A - 1$-many $A$ blood type patients. Since we process $A-O-B$’s first before the real $A-B-A$ type triples in the algorithm (see caveat (1) of the match stage of the procedure), we either finish matching all $B$ blood-type patients before all $A-O-B$’s are matched or all $A-O-B$-type triples are matched but possibly one. However in the second case, one $A-O-B$ type triple cannot be left unmatched by the following arguments: By caveat (3) of the match stage of the procedure, if one $A-O-B$ type triple is left unmatched in Step 2 of the match stage, then this one triple is treated like an $A-B-B$ type triple in Step 3. At least one $B-A-A$ type triple remains in Step 3, as all $B$ blood-type patients were not matched before matching $A-O-B$’s. We match these two triples in a two-way exchange. Thus, we match $\kappa$-many $A-O-B$ type triples.

(b) if $\underline{s}_A < \overline{s}_B$: In the group stage of the procedure, $A-O-B$’s are treated like $A-B-B$’s, while $B-O-A$’s are treated like $B-A-B$’s. We match all $A$ blood-type patients by Lemma 6 and $\overline{m}_A = p_A$. Hence $n(A-O-B) \leq p_A \leq \overline{s}_B$. Thus, we match exactly $\kappa$-many $A-O-B$ type triples.

In the last part of the proof, we show that the maximum number of $A-O-B$ type triples that can be matched is $\kappa$. To prove this result we directly use Lemma 6. Observe that an upper-bound to the number of $A$ blood-type patients among
\[ E_A = \{A - O - B, A - B - A, A - B - B\} \] types that can be matched is
\[ m_A = \min \{ p_A, \left\lfloor \frac{d_O + d_A}{2} \right\rfloor, \tau_B \} \] by Lemma 6. Then an upper-bound to the number of
\[ A - O - B \] type triples that can be matched is
\[ m_{A-O-B} := \min \{ n(A - O - B), \left\lfloor \frac{d_O + d_A}{2} \right\rfloor, \tau_B \}. \]
As \( m_{A-O-B} \) is an upper-bound to the number of \( A - O - B \)’s that can be matched, \( \kappa \leq m_{A-O-B} \). However, by definition of \( \kappa \) and construction of \( m_{A-O-B} \), \( \kappa \geq m_{A-O-B} \). Thus, \( \kappa = m_{A-O-B} \).

Using the above intermediate results, we state and prove the main theorem of this section about the sufficiency of 2–6-way exchanges and finding an optimal matching without exchange size constraints: Procedure 5 is optimal.

**Theorem 3** Suppose that the lung exchange pool \( \mathcal{E} \) satisfies the long-run assumption and all sizes of exchanges are allowed. Then Procedure 5, the sequential matching procedure without size constraints, finds an optimal matching. Moreover, none of the exchanges in this matching are larger than 6-way. The number of patients matched in an optimal matching is given by
\[ m - \mathbb{I} + \min \{ n(A - O - B), \tau_B \} + \min \{ n(B - O - A), \tau_A \}, \]
where \( \mathbb{I} \in \{0, 1\} \), and \( \tau_X \) for \( X \in \{A, B\} \) and \( m \) are defined in Equations 5 and 6, respectively.

**Proof of Theorem 3:** By Proposition 1, \( m - \mathbb{I} \) patients from the essential triple types \( E_A \cup E_B \) are matched through the group and match procedure (in the first step of the sequential matching procedure without size constraints) and by Proposition 2, this procedure also matches the maximum number of \( A - O - B \) and \( B - O - A \) type triples possible. Let \( \mu \) be the outcome of this procedure, which is optimal for triples from \( E_A \cup E_B \). By Lemma 5, we can add additionally one triple from types \( T \setminus E_A \cup E_B \) for each \( A - O - B \) and \( B - O - A \) type triple matched in \( \mu \). This is the maximum number of triples we can match from types in \( T \setminus E_A \cup E_B \) in any matching by the same lemma. Since the number of \( A - O - B \) and \( B - O - A \) type triples matched in \( \mu \) is \( \min \{ n(A - O - B), \tau_B \} + \min \{ n(B - O - A), \tau_A \} \) (by Proposition 2) then the sequential matching procedure without size constraints matches a total of \( m - \mathbb{I} + \min \{ n(A - O - B), \tau_B \} + \min \{ n(B - O - A), \tau_A \} \) triples and its outcome is optimal. Matching \( \mu \) has exchanges no larger than 3-ways. Since at most one additional triple is inserted in each exchange for each triple matched in the second step of the procedure, then the final outcome has exchanges no larger than 6-ways.

The next example shows that using 6-way exchanges is not only sufficient, but also necessary to find an optimal matching in some exchange pools.
Example 1 Consider an exchange pool with

- 3 blood type O patients and 6 blood type O donors,
- 2 blood type B patients and 4 blood type B donors, and
- 1 blood type A patient and 2 blood type A donors.

Hence, for optimality, each patients receives a lung lobe from two donors of exactly her own blood type, and all are matched. (*)

Triple types are:

1. $A - O - B$ needs to be in the same exchange as both Patients 2 & 3
2. $B - O - A$
3. $B - O - A$
4. $O - O - B$ needs to be in the same exchange as one of Patients 1, 2, 3
5. $O - O - B$ needs to be in the same exchange as one of Patients 1, 2, 3
6. $O - O - B$ needs to be in the same exchange as one of Patients 1, 2, 3

Hence, Argument (*) along with the arguments in the enumerated list above imply that a 6-way exchange is necessary to match all patients and obtain an optimal matching.

5 Simulations

In this section, we conduct calibrated simulations to quantify potential gains from an organized lung exchange.

We start with explaining the calibration parameters we used in the simulations. We use aggregate data statistics from lung transplantation (deceased or live) patient population from the US (see Table 1).\footnote{Although live donor lobar lung transplantation is not as common in the US as eastern Asian countries, the US data statistics are obtained from the largest transplant patient population in the world, very detailed, and readily available on the internet. That is the reason we use the data statistics from the US to calibrate our simulations.} Live donor lobar transplantation is especially common for two classes of patients in the world: those who suffer from cystic fibrosis or pulmonary hypertension. Therefore we assume that all live transplant lung patients come from these
two classes. Among all lung transplants (from deceased or live), these classes of patients constitute 14.57% and 5.47% of all transplant patient additions in the US, respectively. We use this cystic fibrosis to pulmonary hypertension patient ratio of 2.66 to 1 in generating our random patients. New patient additions to the lung exchange pool are assumed to have the same age distribution as the respective deceased donor list additions reported in Table 1. Cystic fibrosis patients are relatively much younger. We only consider adult patients in our analysis. Patients’ blood type distribution is also given in the same table from the same US sample. Moreover, the weight of each patient is also randomly determined. The distribution of weights of female and male American adults were obtained the National Health and Nutrition Examination Survey 2007-2008. Using these distributions we randomly generate each patient: disease, gender, age, blood type, and weight.

<table>
<thead>
<tr>
<th>Data for Lung Transplant Patients with Respect to Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystic Fibrosis</td>
</tr>
<tr>
<td>Percentage</td>
</tr>
<tr>
<td>Gender Distribution</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Age Distribution</td>
</tr>
<tr>
<td>Adult Ages</td>
</tr>
<tr>
<td>18-34</td>
</tr>
<tr>
<td>35-49</td>
</tr>
<tr>
<td>50-64</td>
</tr>
<tr>
<td>Blood Type Distribution</td>
</tr>
<tr>
<td>O</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>AB</td>
</tr>
</tbody>
</table>

Table 1: Data Statistics for Lung Transplant Patients. This table reflects the US OPTN national data obtained on May 27-31, 2014 from http://www.optn.org for lung transplant recipient candidates added to the deceased donor wait list to date. “Percentage” row reflects the percentage of patients with cyclic fibrosis and primary pulmonary hypertension among all 35,420 new additions to date. The rest of the data is for adult patients between ages 18-64 only that constitute about 84% of all new additions for either diagnosis type.

We assume that each patient is randomly matched with two US adults as directed donors. Donor gender is determined as 50% male–50% female; donor blood-type distribution is matched that of the US general population: 44% O, 42% A, 10% B, and 4% AB. For

---

6 For example see http://www.bloodbook.com/world-abo.html. We retrieved it on May 27, 2014.
their age distribution, we use the US census data for gender age composition of the US population in 2010\(^7\) and weight distribution that we used. Donor weights are also assumed to be distributed with the same distribution used for the patients. Using these distributions, we randomly generate the characteristics of each donor of the triple: gender, age, blood type, and weight.

After generating \(n = 10, 20,\) or 50 patient-donor triples, we check which triples are compatible, i.e., which of the patients can receive a lung lobe from each of her donors. Compatibility test has two components:

- blood-type compatibility: we use \(\succeq\) relation we always used throughout the paper; and
- size compatibility: we assume that a patient can only receive a transplant from a donor as heavy as herself.\(^8\)

Patients that are incompatible with at least one of their own donors participate in the exchange. Others receive two lobes directly from their own donors. In this way we form an exchange pool. Then we find optimal 2-way, 2&3-way, 2-4-way, 2-5-way, and unrestricted matchings. We generate \(S = 500\) such patient samples and take the averages and sample standard errors of the numbers of patients matched through direct donation and optimal exchanges under and exchange-matched patients in Table 2. We also run a control group of simulations in which size compatibility is not required.

Potential gains from exchange increase significantly with the relaxation of restrictions on feasible exchange size. When \(n = 50\) with donor size compatibility requirement (the last two lines), only 16% of the patients can receive direct donation and the rest, 84% participate in exchange. Using only 2-way exchange 10% of the patients can be matched (i.e., an overall 60% increase in the patients receiving live transplantation). As we increase the largest permissible exchange sizes, the gains continue to significantly increase. Using 2&3-way exchanges, we can double the number of patients receiving live transplant with respect to direct donation only (16% of all patients can additionally be matched). Of course, larger exchange sizes require more transplant teams to be simultaneously available, and can force the limits of logistical constraints. For example, a 5-way exchange requires 15 simultaneous surgeries. Even so, using 2-5-way exchanges, we can match 23.5% of all patients in lung exchange, an almost 150% increase above direct donation, an almost 50% increase over 2&3-way exchanges. Hence, the tradeoff of not conducting larger exchanges can be huge in terms of life loss. Most remarkably, without any restrictions on exchange sizes, more than 190%


\(^8\)Height could have been used as an alternative size compatibility measure.
Lung Exchange Simulations

Table 2: Lung Exchange Simulations. Here each patient needs double lobar transplants and has two donors. She has either pulmonary hypertension or cystic fibrosis as the main reason of her disease. Standard errors reported under averages in parentheses belong to the sample; for the standard errors of the averages, these need to be divided by the square root of the simulation number, \( \sqrt{500} = 22.361 \).

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Donor Size Constraint?</th>
<th>Direct Donation</th>
<th>Exchange Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2-way</td>
<td>2&amp;3-way</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>4.364 (1.5724)</td>
<td>0.492 (0.90751)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>1.564 (1.1422)</td>
<td>0.356 (0.81645)</td>
</tr>
<tr>
<td>20</td>
<td>No</td>
<td>8.852 (2.2884)</td>
<td>1.472 (1.5537)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>3.156 (1.6313)</td>
<td>1.148 (1.422)</td>
</tr>
<tr>
<td>50</td>
<td>No</td>
<td>22.42 (3.6538)</td>
<td>4.688 (2.59)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>8.092 (2.64)</td>
<td>4.936 (2.9863)</td>
</tr>
</tbody>
</table>

patients who receive direct donation can be matched, almost tripling the number of patients receiving transplants to 47% of all patients in the population.

The effect of sample size on marginal contribution of exchanges is also very significant: when \( n = 10 \), the contribution of 2&3-way and unrestricted are only 30% and 37% of patients matched through direct donation (instead of 100% and 190% for \( n = 50 \)), respectively (and those refer to 4.75% and 5.75% of all patients).

References


Hwang, Shin, Sung-Gyu Lee, Deok-Bog Moon, Gi-Won Song, Chul-Soo Ahn, Ki-Hun Kim, Tae-Yong Ha, Dong-Hwan Jung, Kwan-Woo Kim, Nam-Kyu Choi, Gil-Chun Park, Young-Dong Yu, Young-II Choi, Pyoung-Jae Park, and Hea-Seon Ha (2010), “Exchange living donor liver transplantation to overcome ABO incompatibility in adult patients.” Liver transplantation, 16, 482–90.


